

Worksheet 4.2

1. A ball on the end of a string is cleverly revolved at a uniform rate in a vertical circle of radius 85.0 cm . If its speed is $4.15 \mathrm{~m} / \mathrm{s}$ and its mass is 0.300 kg , calculate the tension in the string when the ball is (a) at the top of its path, and (b) at the bottom of its path.
2. A discus thrower spins their discus $(2 \mathrm{~kg})$ in a horizontal circle with a radius 1 meter. The normal force applied from the thrower's finger tips keeps the disc in circular motion. If the discus with a speed of $2 \mathrm{~m} / \mathrm{s}$, what normal force do the thrower's fingers exert on the disc? What normal force does the disc exert on the fingers?

$$
\begin{aligned}
& F_{C}=F_{N} \\
& \left.\frac{(2) 2^{2}}{1}=8 \mathrm{~N} \text { for both (3 cl lan }\right)
\end{aligned}
$$

3. A bucket with a mass of 4 kg is swung around in a vertical circle with a rope that is 1.2 meters long. What is the speed of the bucket at the top of the circle if the tension in the rope at the same point is 8 N ?
Cha, $F_{c}=F_{g}+F_{T}$

$$
\frac{(4)\left(v^{2}\right)}{19}=40+8 \quad v=3.79 \mathrm{~m} / \mathrm{s}
$$

1.2
4. Revolution at Six Flags Magic Mountain has a loop with a height of 27 meters (assume a circular loop). The ride travels at $25 \mathrm{~m} / \mathrm{s}$ at the bottom of the loop. If the loaded cart has a mass of 2000 kg , what is the normal applied to the ride from the track at the bottom?
F_{n} ?
C bottom, $F_{c}=F_{N}-F_{g}$
$2000(25)^{2}$

$$
\frac{2000(25)^{2}}{13.5}=F_{N}-20000 \quad F_{N}=112592.6 \mathrm{~N}
$$

5. A 50 kg teenager is riding on the Gravitron (radius 6 m), which spins its riders around in circles so the stick to the walls. The coefficient of static friction between the teenager and the wall is 0.4 . How fast must the Gravitron spin in order to allow the teenager to stick to the wall with their feet off of the ground?
we need $F_{f_{s}} \geq F_{g}$, but $F_{f s}$ depends on the F_{N}.

$F_{f_{s}}=(4)\left(\frac{50 v^{2}}{6}\right)$
50... $4\left(\frac{50 v^{2}}{6} \geq 500\right.$
$\mathrm{Fg}=500 \mathrm{~N}$

6. A child on a merry-go-round is moving with a speed of $1.35 \mathrm{~m} / \mathrm{s}$ when 1.20 m from the center of the merry-go-round. Calculate (a) the centripetal acceleration of the child, and (b) the centripetal force exerted on the child (mass $=25.0 \mathrm{~kg}$).

$$
a_{c}=\frac{1.35^{2}}{1.2}=1.5 \mathrm{~m} / \mathrm{s}^{2} \quad F_{C}=\frac{25 \cdot 1.35^{2}}{1.2}=37.97 \mathrm{~N}
$$

$V=$
lear $=365$ days $\begin{array}{ll}8760 \mathrm{hrs} \\ 525000 \mathrm{~min} \\ 31536000 \mathrm{sec} & 2 \times 10^{33} \mathrm{~kg} .\end{array} \quad a_{C}=\frac{\left.3 \times 10^{4}\right)^{2}}{1.5 \times 10^{11}}=.006 \mathrm{~d} / \mathrm{s}^{2}$ $v=\frac{2 \pi\left(1.5 \times 0^{11}\right)}{31536000}=3 \times 10^{4} \mathrm{~m} / \mathrm{s}$ force exerted on the Earth? What exerts this force on the Earth? Assume that the Earth's orbit is a circle of radius $1.50 \times 10^{11} \mathrm{~m}$, its mass is $6 \times 10^{24} \mathrm{~kg}$ and the mass of the sun is

$$
F_{c}=.006 \mathrm{~m} / \mathrm{s}^{2} \times 6 \times 10^{24}=3.6 \times 10^{22} \mathrm{~N}
$$

The Fy between the sun's earth, it's due to their interaction.
8. A $1000-\mathrm{kg}$ sports car moving at $20 \mathrm{~m} / \mathrm{s}$ crosses the rounded top of a hill (radius $=100 \mathrm{~m}$). Determine (a) the normal force on the car, (b) the normal force on the $70-\mathrm{kg}$ driver, and (c) the car speed at which the normal force equals zero.
a)

$$
\begin{aligned}
& F_{C}=F_{g}-F_{N} \\
& \frac{1000 \cdot 20^{2}}{100}=10000-F_{N} \\
& F_{N}=6,000 N
\end{aligned}
$$

b). $\frac{70 \cdot 20^{2}}{100}=700-F N$

$$
F_{N}=420 \mathrm{~N}
$$

$$
\text { C) } \begin{aligned}
& \frac{1000 v^{2}}{100}=10000-0 \\
& v=31.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

