Worksheet 4.1 Gravitational Force

1. A piece of space debris has a mass of 4 kg. It is located 2000 m from an asteroid. If the force of gravity is 0.6 N between them, what is the mass of the asteroid?

of gravity is 0.6 N between them, what is the mass of the asteroid? $M = 9 \times 10^{15} \text{ kg}$

2. A $6x10^{12}$ kg moon in a distant galaxy experiences a 1 N force of attraction between it and a $10x10^{30}$ kg planet. How far apart are they?

1=(67×10")(6×1012 X10×1030) r=6×101/m

3. What is the force of gravity between earth and the moon? The earth's mass is $5.98 \times 10^{24} \text{ kg}$, the distance from the earth to the moon is $3.90 \times 10^8 \text{ m}$. The mass of the moon is $7.30 \times 10^{22} \text{ kg}$.

Fy $(6.7 \times 10^{-1})(5.95 \times 10^{-1})(7.3 \times 10^{-2})$ = 1.9×10^{20} N 4. You weigh 458 N on earth, but you are on Mars. Here's some data on Mars: radius = 3.38 x

4. You weigh 458 N on earth, but you are on Mars. Here's some data on Mars: radius = 3.38×10^6 m, mass = 6.42×10^{23} kg. (a) What is the acceleration of gravity on Mars? (b) How much do you weigh on Mars? (c) If you drop a 3.50 kg rock from the surface of Mars and it falls a distance of 1.20 m, how fast will it be going just before it hits the surface?

 $g_{\text{mars}} = \frac{458 \text{MpW/g}}{(3.38 \times 10^6)^2} = 3.76 \text{ m/s}^2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(2.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text{ m}}{(3.370)} e^2 + 0 + 1.2$ $c) \cdot 0 = \frac{1.20 \text$

5. If the mass of Mercury is 3.3×10^{23} kg and its radius of 2.4×10^6 m, estimate the gravitational acceleration (g) at the surface of Mercury.

9-(7×10")(3.3×10=3.84)/52

6. An object of mass 0.5 kg is transported to the surface of Planet X where the object's weight is measured to be 20 N. The radius of the planet is 4×10^6 m. (a) What is the mass of the planet? (b) What free fall acceleration will the 0.5 kg object experience when transported to a distance of 2.0×10^6 m from the surface of the planet? (no longer on the surface)

 $20N = 9(.5) \quad 9 = 40 - 1/5^{2}$ $40 = \frac{(6.67 \times 10^{-1})(M)}{(4 \times 10^{-1})^{2}} = \frac{17.8 \, \text{m/s}^{2}}{(4 \times 10^{-1})^{2}} = 17.8 \, \text{m/s}^{2}$ $40 = 9.6 \times 10^{24} \, \text{kg}$

- 7. Saturn has many moons that orbit it. Saturn has a mass of $5.68 \times 10^{26} \,\mathrm{kg}$.
 - a. The closest moon to Saturn, Mimas, has an orbital radius of 185,000,000 m from Saturn's core. What is the tangential velocity of Mimas as it orbits?

ore. What is the tangential velocity of Mimas as it orbits?

$$\frac{1}{19} = \frac{1}{12} = \frac{$$

b. What centripetal force does Mimas (mass = 3.8×10^9 kg) experience due to Saturn's gravitational pull?

c. Titan has a tangential velocity of 5,580 m/s. What is its orbital radius?

d.Dione has a mass of $11x10^{20}$ kg and a diameter of 1,123,000 m. What is the acceleration due

and Saturn?
$$f_{9} = (67 \times 10^{11}) \times (11 \times 10^{20}) \times (5.68 \times 10^{24}) = 2.9 \times 10^{18} \text{ N}$$

$$377,000,000^{2}$$

- f. Rhea has an orbital radius of 527,000,000 m and experiences a gravitational force of 3.1×10^{20}
 - N. What is the mass of Rhea?

What is the mass of Rhea?

3.1×10²⁰
$$n = (6.7×10^{-1})(5.68×10^{24})(m)$$
 $m = 2.3×10^{-23}$
 $m = 2.3×10^{-23}$

Fill in the missing information from the table below.

	Saturn	Titan	Prometheus
Force gravity from	X	3.4×02N	3.1×1017N
Saturn			2.1710 13
Gravitational Constant	2.8m/s2	1.352 m/s^2	
(g)	12.8 1413		
Radius	$5.44 \times 10^7 \mathrm{m}$	$2.57 \times 10^6 \text{ m}$	$4.3 \times 10^4 \text{ m}$
Distance from Saturn	X	1.2 x109m	$1.4x10^8$ m
Mass	$5.6846 \times 10^{26} \text{kg}$	$1.3 \times 10^{24} \text{ kg}$	$1.6 \times 10^{17} \text{ kg}$
Period about Saturn	X	16 days	53410 seconds

$$\frac{mv^{2}}{\sqrt{1.4\times10^{8}}} = 3.1\times10^{17}N$$

$$\frac{1.6\times10^{17}}{1.4\times10^{8}} = 7$$

$$V = 16469.7 MS$$