Worksheet 4.1 Gravitational Force

1. A piece of space debris has a mass of 4 kg . It is located 2000 m from an asteroid. If the force of gravity is 0.6 N between them, what is the mass of the asteroid?

$$
6=\frac{\left(6.7 \times 10^{-11}\right)(41 \mathrm{~kg})(M)}{2000^{2}} \quad M=9 \times 10^{15} \mathrm{~kg}
$$

2. A $6 \times 10^{12} \mathrm{~kg}$ moon in a distant galaxy experiences a 1 N force of attraction between it and a $10 \times 10^{30} \mathrm{~kg}$ planet. How far apart are they?

$$
1=\frac{\left(6.7 \times 10^{-11}\right)\left(6 \times 10^{12}\right)\left(10 \times 10^{30}\right)}{r^{2}} \quad r=6 \times 10^{16} \mathrm{~m}
$$

3. What is the force of gravity between earth and the moon? The earth's mass is $5.98 \times 10^{24} \mathrm{~kg}$, the distance from the earth to the moon is $3.90 \times 10^{8} \mathrm{~m}$. The mass of the moon is $7.30 \times 10^{22} \mathrm{~kg}$.

$$
F y=\frac{\left(6.7 \times 10^{-11}\right)\left(5.98 \times 10^{241}\right)\left(7.3 \times 10^{22}\right)}{\left(3.9 \times 10^{8}\right)^{2}}=1.9 \times 10^{20} \mathrm{~N}
$$

4. You weigh 458 N on earth, but you are on Mars. Here's some data on Mars: radius $=3.38 \mathrm{x}$ $10^{6} \mathrm{~m}$, mass $=6.42 \times 10^{23} \mathrm{~kg}$. (a) What is the acceleration of gravity on Mars? (b) How much do you weigh on Mars? (c) If you drop a 3.50 kg rock from the surface of Mars and it falls a distance of 1.20 m , how fast will it be going just before it hits the surface?

$$
\begin{array}{rlrl}
\text { mass }=458 \mathrm{~N} / 10 \mathrm{~N} / \mathrm{kg}=45.8 \mathrm{~kg} & \text { C) } .0 & =1 / 2(-3.76) t^{2}+0 t+1.2 \\
g_{\text {mars }}=\left(6.7 \times 10^{-11}\right)\left(6.42 \times 10^{23}\right) \\
\left(3.38 \times 10^{6}\right)^{2} & t=3.76 \mathrm{~m} / \mathrm{s}^{2} & O & =-1.88 t^{2}+1.2 \\
F_{\text {g mars }}=(45.8)(3.76)=172.4 \mathrm{~N} & t & =.8 \mathrm{~s} \\
& & V y=-3.76(.8)+0 \\
& =-3 \mathrm{~m} / \mathrm{s}
\end{array}
$$

5. If the mass of Mercury is $3.3 \times 10^{23} \mathrm{~kg}$ and its radius of $2.4 \times 10^{6} \mathrm{~m}$, estimate the gravitational acceleration (g) at the surface of Mercury.

$$
g=\frac{\left(6.7 \times 11^{-1} 1\right)\left(3.3 \times 10^{23}\right)}{\left(2.4 \times 10^{6}\right)^{2}}=3.84 \mathrm{~m} / \mathrm{s}^{2}
$$

6. An object of mass 0.5 kg is transported to the surface of Planet X where the object's weight is measured to be 20 N . The radius of the planet is $4 \times 10^{6} \mathrm{~m}$. (a) What is the mass of the planet?
(b) What free fall acceleration will the 0.5 kg object experience when transported to a distance of $2.0 \times 10^{6} \mathrm{~m}$ from the surface of the planet? (no longer on the surface)

$$
\begin{aligned}
& 20 \mathrm{~N}=9(.5) \quad g=40 \mathrm{r} / \mathrm{s}^{2} \\
& 40=\frac{\left(667 \times 10^{-1}\right)(\mathrm{M})}{\left(4 \times 10^{6}\right)^{2}} \\
& m=9.6 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

$$
\frac{5\left(6.67 \times 10^{-11}\right)\left(9.6 \times 10^{24}\right)}{\left(4 \times 10^{6}+2 \times 10^{6}\right)^{2}}=17.8 \mathrm{~m} / \mathrm{s}^{2}
$$

7. Saturn has many moons that orbit it. Saturn has a mass of $5.68 \times 10^{26} \mathrm{~kg}$.
a. The closest moon to Saturn, Mimas, has an orbital radius of $185,000,000 \mathrm{~m}$ from Saturn's core. What is the tangential velocity of Mimas as it orbits?

$$
\begin{aligned}
F_{g}=F_{c}=\frac{m v^{2}}{r} \quad \frac{G / \ln M}{r^{2}}=\frac{51 v^{2}}{r} \quad \frac{\left(6.67 \times 10^{-11}\right)\left(5.68 \times 10^{26}\right)}{\left(185 \times 10^{6}\right)} & =v^{2} \\
v & =14310 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b. What centripetal force does Mimas (mass $=3.8 \times 10^{9} \mathrm{~kg}$) experience due to Saturn's gravitational pull?

$$
F_{C}-\frac{-\left(3.8 \times 10^{9}\right)^{(14310)^{2}}}{185 \times 10^{6}}=4.2 \times 10^{9} \mathrm{~N}
$$

c. Titan has a tangential velocity of $5,580 \mathrm{~m} / \mathrm{s}$. What is its orbital radius?

$$
5.580=\sqrt{\frac{6 m}{r}} \quad S 580=\sqrt{\frac{\left.6.7 \times 10^{-11}\right)\left(5.68 \times 10^{24}\right)}{r}} \quad r=1.2 \times\left(0^{7} \mathrm{~m}\right.
$$

d. Dione has a mass of $11 \times 10^{20} \mathrm{~kg}$ and a diameter of $1,123,000 \mathrm{~m}$. What is the acceleration due to gravity on the moon's surface?

$$
g=\frac{\left(6.7 \times 10^{-11}\right)\left(11 \times 10^{20}\right)^{2}}{(1.230002)^{2}}=23 \mathrm{~m} / \mathrm{s}^{2}
$$

e. Dione is located $377,000,000 \mathrm{~m}$ from Saturn. What is the force of gravity between Dione and Saturn?

f. Rhea has an orbital radius of $527,000,000 \mathrm{~m}$ and experiences a gravitational force of 3.1×10^{20}

$$
\begin{aligned}
& \text { N. What is the mass of Rhea? } \\
& \left.3.1 \times 10^{20} 0=\frac{\left(6.7 \times 10^{111}\right)\left(5.68 \times 10^{24}\right.}{527,000,000^{2}}\right)(m) \quad m=2.3 \times 10^{23} \mathrm{~kg}
\end{aligned}
$$

8. Fill in the missing information from the table below.

	Saturn	Titan	Prometheus
Force gravity from Saturn	X	$3.4 \times 10^{22} \mathrm{~N}$	$3.1 \times 10^{17} \mathrm{~N}$
Gravitational Constant (g)	$12.8 \mathrm{~m} / \mathrm{s}^{2}$	$1.352 \mathrm{~m} / \mathrm{s}^{2}$	
Radius	$5.44 \times 10^{7} \mathrm{~m}$	$2.57 \times 10^{6} \mathrm{~m}$	$4.3 \times 10^{4} \mathrm{~m}$
Distance from Saturn	X	$1.2 \times 10^{9} \mathrm{~m}$	$1.4 \times 10^{8} \mathrm{~m}$
Mass	$5.6846 \times 10^{26} \mathrm{~kg}$	$1.3 \times 10^{24} \mathrm{~kg}$	$1.6 \times 10^{17} \mathrm{~kg}$
Period about Saturn	X	16 days	

