Worksheet 1.8

Motion Equations; X-direction only

1. Write down the four main equations that describe motion in the x-direction.

$$
\begin{gathered}
V_{f}=a t+V_{i} \\
x_{f}=1 / 2 a t^{2}+V t+x_{i} \\
V_{f}^{2}=V_{i}^{2}+2 a \Delta x \\
\Delta x=t / 2\left(V_{f}+V_{i}\right)
\end{gathered}
$$

2. A hockey puck leaves a player's stick from a position of $\mathrm{x}=2 \mathrm{~m}$ with a velocity of 25 m / s and moves across the ice with a constant deceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$ due to friction from the ice. Draw x vs t, v vs t , and a vs t graphs that describe this situation. Make sure to label your axis.

What is v_{0} ? $25 \mathrm{~m} / \mathrm{s}$

What is x_{0} ? $2 m$
 What is a?-. $5 \mathrm{~m} / \mathrm{s}^{2}$
3. Rewrite the equations from (1) for this system by substituting in the variables provided.

$$
\begin{aligned}
& v_{f}=(-5) t+25 \mathrm{~m} / \mathrm{s} \\
& x_{f}=y_{2}(-.5) t^{2}+25 t+2 \quad\left(x_{f}-2\right)=\frac{t}{2}\left(v_{f}+25\right) \\
& v_{f}^{2}=25^{2}+2(-.5)\left(x_{f}-2\right)
\end{aligned}
$$

4. What is the velocity of the puck at 1 second?

$$
V_{f}=-.5(1)+25=24.5 \mathrm{~m} / \mathrm{s}
$$

5. What is the position of the puck at 1 second?

$$
x_{f}=1 / 2(-.5)\left(1^{2}\right)+25(1)+2=-25+25+2=26.75 \mathrm{~m}
$$

6. How long does it take for the puck to reach the goal that is 5 meters away?

$$
\begin{aligned}
& 7=12(-5)\left(t^{2}\right)+25 t+2 \quad t=.2 \mathrm{sec} \\
& 0=-.25 t^{2}+25-5
\end{aligned}
$$

7. How fast is the puck traveling when it reaches the goal?

$$
v_{f}=-.5(.12)+25=24.94 \mathrm{~m} / \mathrm{s}
$$

Draw a motion diagram and x vs t, v vs t, and a vs t graphs for each of the following word

 problems in addition to answering the questions.8. A gust of wind hits a beach ball already moving with a velocity of $2 \mathrm{~m} / \mathrm{s}$ to the west. The wind hits the ball for 4 seconds and then stops. When the wind stops, the ball is moving $3 \mathrm{~m} / \mathrm{s}$ to the east. What was the acceleration of the ball due to the wind?

9. If a ball initially started at $x=0 \mathrm{~m}$ with an eastward velocity of $3 \mathrm{~m} / \mathrm{s}$ and an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ to the east, how far will it have traveled after 6 seconds? $v=9 \mathrm{~m} / \mathrm{s}$

$$
x_{i}=0 m
$$

$v_{i}=3 \mathrm{~m} / \mathrm{s}$
$a=1 \mathrm{~m} / \mathrm{s}^{2}$
$t f=6 s$

$$
\begin{aligned}
& v_{f}=(1)(6)+3=9 \mathrm{~m} / \mathrm{s} \\
& x_{f}=\frac{1}{2}\left(6^{2}\right)+3(6)+6=36 \mathrm{~m}
\end{aligned}
$$

10. What is the acceleration of a tennis ball if initially it comes toward the player's racquet at $20 \mathrm{~m} / \mathrm{s}$, and it leaves in the opposite direction at $24 \mathrm{~m} / \mathrm{s}$? A high-speed camera indicates the time of impact of 4.0 ms .

11. A motorcyclist is traveling $10 \mathrm{~m} / \mathrm{s}$ is 200 m behind a car at traveling at a steady $20 \mathrm{~m} / \mathrm{s}$. How fast must the motorcyclist accelerate in order to pass the car in 5 seconds?
(M)
(C)

$$
\begin{array}{ll}
\text { 1) } \begin{array}{ll}
v_{i} & =10 \mathrm{~m} / \mathrm{s} \\
x_{i} & =-200 \mathrm{~m} \\
& \\
v f & =v_{i}
\end{array}=20 \mathrm{~m} / \mathrm{s} \\
x_{i} & =0 \mathrm{~m}
\end{array} \quad t=5 \mathrm{~s} .
$$

$$
\begin{gathered}
x_{f(0}=x_{f}(c) \\
\frac{a}{2}\left(5^{2}\right)+10(5)-200=\frac{0}{2}\left(s^{2}\right)+20(\mathrm{~s})+0 \\
12.5 a-150=100 \\
12.5 a=250 \\
a=20 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

12. A car moving with a velocity of $20 \mathrm{~m} / \mathrm{s}$ requires 3 m to stop. What is the acceleration of the car while stopping? How far would a car traveling at $40 \mathrm{~m} / \mathrm{s}$ need to stop assuming the same rate of acceleration as the first car?

$$
\begin{array}{cc}
v_{i}=20 \mathrm{~m} / \mathrm{s} & 0^{2}=40^{2}+2(-66.7)(\Delta x) \\
x_{f}=3 \mathrm{~m} & -1600=-133.4 \Delta x \\
v_{f}=0 & \Delta x=12 \mathrm{~m} \\
0^{2}=20^{2}+2 a(3) & \Delta=6 a \\
-400=6 a & 12 m=x f-0 \\
a=66.7 \mathrm{~m} / \mathrm{s}^{2} & \begin{array}{cc}
x f & =12 \mathrm{~m}
\end{array}
\end{array}
$$

