Worksheet 1.7
Motion in the Y-Direction

1. Write down the equations that describe motion in the y-direction.

$$
\begin{aligned}
& V_{f}=a t+V_{i} \\
& y_{f}=V_{2} a t^{2}+V_{i} t+y_{i} \\
& V_{f}^{2}=V_{i}^{2}+2 a \Delta y
\end{aligned}
$$

2. A group celebrating rebels in Libya fire their guns into the air. One man stands on his roof 5 m above the ground, leans over the edge and fires his gun vertically. The bullet leaves his gun with a velocity of $900 \mathrm{~h} / \mathrm{s}$. Draw the y vs t, v vs t, and a vs t graphs for the bullet's travel until it reaches the ground. $a=-10 \mathrm{~m} / \mathrm{s}^{2}$

Rewrite the equations from (1) using the information provided in the question.

$$
\begin{aligned}
& v_{f}=-10 t+900 \\
& y_{f}=\frac{1}{2}(-10) t^{2}+900 t+5 \mathrm{~m} \\
& v_{f}^{2}=900^{2}+2(-10)\left(y_{f}-5\right)
\end{aligned}
$$

How long does it take for the bullet to reach its maximum height?
max height occurs eU
$=-10 t+900$

$$
\begin{gathered}
0=-10 t+900 \\
t=905
\end{gathered}
$$

What is the maximum height of the bullet?

$$
y_{f}=11_{2}(-10) 90^{2}+900(10)+5=40,505 \mathrm{~m}
$$

What is the velocity of the bullet as it hits the ground? Approach this problem from the time when the initial velocity in the y-direction is zero (at its maximum height) and treat it as an object falling from its maximum height.

$$
\begin{aligned}
& t_{\text {toke }}=90 \mathrm{~s} \text { + time to foll from max height) } \\
& \rightarrow 0=1 / 2\left(-10 t^{2}+0 t+40,505\right.
\end{aligned}
$$

For the following questions, draw the motion diagram associated with each question along with the x vs t , v vs t , and a vs t graphs that describe the motion.
3. Steph Curry drops a basketball from the top of the Transamerica Building in SF ($\mathrm{h}=260$ m). Knowing that gravity accelerates the basketball at a rate of $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ with what velocity does the basketball hit the ground? How long does it take to hit the ground?

Calculate t_{f}

4. A hot air balloon is floating at a constant height 30 m above the ground when someone onboard releases an apple core. What is the velocity when the apple core hits the ground? How long does it take to reach the ground $y=30 \mathrm{~m}$

calculate t_{f}

$$
\begin{gathered}
0=1 / 2(-10)\left(t^{2}\right)+0 t+30 \\
-5 t^{2}+30=0 \\
t=2.45^{5}
\end{gathered}
$$

calculaterf

$$
\begin{aligned}
V_{f} & =-10(2.45)+0 \\
& =-24.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. A person standing at the edge of a 100 m cliff drops one ball straight down and throws another ball straight down with an initial velocity of $-10 \mathrm{~m} / \mathrm{s}$. Neglecting air resistance, with what velocities do the two balls hit the ground below the cliff? How much time passes between the two balls hitting the ground?

$$
\begin{gathered}
y_{i}=100 \mathrm{~m} \\
v_{i}=-10 \mathrm{~m} / \mathrm{s}, v_{i}=0 \mathrm{~m} / \mathrm{s} \\
a=-10 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Vf for boil?
$t f$ for both?

Hf's
(1) $0=1 / 2(-10) t^{2}+0 t+100$

$$
E_{f}=4.45 \mathrm{sec}
$$

v_{f} 's: $\left(D v_{f}=-10(4.45)+0=44.5 \mathrm{~m} / \mathrm{s}\right.$
(2) $v_{f}=-10(3.6)-10=46 \mathrm{~m} / \mathrm{s}$
(2) $6=1 / 2(-10) t^{2}+(-10) t+100$

$$
t=3.6 \mathrm{sec}
$$

Time between impacts: $4.45 \mathrm{sec}-3.6 \mathrm{sec}=.85 \mathrm{sec}$
6. A ball is thrown vertically the ground 2 seconds later. What was the initial velocity of the ball when thrown? What is the velocity of the ball when it hits the ground?

$$
\begin{array}{ll}
y_{i}=120 \mathrm{~m} & V_{f} ? \\
t_{f}=2 \mathrm{~s} & V_{i} ? \\
a=-10 \mathrm{~m} / \mathrm{s}^{2} &
\end{array}
$$

$$
\frac{v_{f}}{v_{f}}-10(2)-50=-70 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \frac{\text { calculate } V_{i}}{0=\frac{-10\left(2^{2}\right)}{2}}+V_{i}(2)+120 \\
& 0=-20+2 V_{i}+120 \\
& -100=2 V_{i} \\
& V_{i}=-50 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7. A ball is thrown vertically from the ground at a velocity $30 \mathrm{~m} / \mathrm{s}$, when another ball is dropped along the same line, simultaneously from the top of a tower 120 m in height. Find the time when the two balls meet (same place at the same time).
(1)

$$
\begin{aligned}
& v_{i}=30 \mathrm{~m} / \mathrm{s} \\
& a=-10 \mathrm{~m} / \mathrm{s}^{2} \\
& y_{i}=0
\end{aligned}
$$

(2)

$$
\begin{aligned}
& v_{i}=0 \mathrm{~m} / \mathrm{s} \\
& a=-10 \mathrm{~m} / \mathrm{s}^{2} \\
& y_{i}=120 \mathrm{~m}
\end{aligned}
$$

$$
\operatorname{set} y_{f(1)}=y_{f(1)}
$$

$$
\begin{gathered}
\frac{-10}{2} t^{2}+30 t+0=\frac{-10}{2} t^{2}+0 t+120 \\
30 t=120 \\
t=45
\end{gathered}
$$

$$
\text { position: } \quad y_{f}=-102(4)^{2}+30(4)+0=40 \mathrm{~m}
$$

