Worksheet 1.2

For each track diagram, draw the corresponding x vs. t graph and determine the sign of the displacement, velocity, and acceleration.
1.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one)
The velocity is: positive zero negative (circle one)
The acceleration is: positive zero negative (circle one)
2.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one)
The velocity is: positive zero negative (circle one)
The acceleration is: positive zero negative (circle one)
3.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one)
The velocity is: positive zero negative (circle one)
The acceleration is: positive zero negative (circle one)
4.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one)
The velocity is: positive zero negative (circle one)
The acceleration is: positive zero negative (circle one)
5.

In the diagram above, two men are racing Segways though Golden Gate Park. The graph above represents their positions across a range of times.
How many seconds behind Man A is Man B? 2. 5 Se
How do their velocities compare? Same - Same slope Will Man B ever catch Man A?
6.

The graph above represents a snapshot of two marathon runners competing in a race. At what time point does runner B pass runner A ? 45
What are the two runners' approximate velocities?

$$
\begin{aligned}
& A=\text { Slope }=Y_{2}, \text { velocity }=5 \mathrm{~m} / \mathrm{s} \\
& B: \text { slope }=5 / 4, \text { velocity }=1.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7.

The graph above represents two cars going in opposite directions on a freeway.
At what point in space and time do the two cars pass each other? $X=1.25 \mathrm{~m}$
Which car is traveling at a higher speed? B'S velocity $=-7 \mathrm{~m} / 4 \mathrm{~s}$

$$
\begin{aligned}
& \text { A's velocity }^{\prime}=\frac{y m}{5 s} \\
& \text { speed }=|v| \\
& 7 / m / \mathrm{m} / \mathrm{s} 7 / 5 \mathrm{~m} / \mathrm{s} \\
& \text { So B is traveling faster than } \mathrm{A} .
\end{aligned}
$$

