Worksheet 1.2

For each track diagram, draw the corresponding x vs. t graph and determine the sign of the displacement, velocity, and acceleration.
1.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one)
The velocity is: positive zero negative (circle one)
The acceleration is: positive zero negative (circle one)
2.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one)
The velocity is: positive zero negative (circle one)
The acceleration is: positive zero negative (circle one)
3.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one) The velocity is: positive zero negative (circle one) The acceleration is: positive zero negative (circle one)
4.

The displacement, $\Delta \mathrm{x}$, is: positive zero negative (circle one)
The velocity is: positive zero negative (circle one)
The acceleration is: positive zero negative (circle one)
5.

In the diagram above, two men are racing Segways though Golden Gate Park. The graph above represents their positions across a range of times.
How many seconds behind Man A is Man B?
How do their velocities compare?
Will Man B ever catch Man A?
6.

The graph above represents a snapshot of two marathon runners competing in a race. At what time point does runner B pass runner A ?
What are the two runners' approximate velocities?
7.

The graph above represents two cars going in opposite directions on a freeway.
At what point in space and time do the two cars pass each other?
Which car is traveling at a higher speed?

