

Normal Force as Centripetal Force

- Example Situations:
- Roller coasters
- Centrifuges
- Skate ramps

In a horizontal rotational frame, the centripetal force is just equal to the normal force exerted inwardly on the object.

$$
F_{c}=m v^{2} / r
$$

Normal Force as Centripetal Force

- For vertical circles, the problems get a little bit more difficult, because gravity comes into play.
- The equation for F_{c} is dependent on where in the loop the object is.

$$
\begin{aligned}
& \frac{234}{}: F_{C}=F_{N} \\
& \frac{m v^{2}}{r}=F_{N} \\
& \frac{3 v^{2}}{r}=F_{N}=F_{N}+F_{g}+\frac{d}{F_{N}} \cdot \frac{F_{C}=F_{N}-F_{g}}{r}=F_{N}-m g \\
& T F_{N} T
\end{aligned}
$$

Example Fg_{g}
$F_{c}=F y-F_{N}$

- A roller coaster, loaded with passengers, has a mass of 3000 kg and loop with a radius 20 m . At the bottom loop, the coaster travels at 30 m / s. What force is exerted on the car by the track?

Tension as a Centripetal Force

- Tension
equations will be done in the same way as the normal force:

Example

- A ball tied to a string is spun around vertically in a circle. The ball has a mass of 0.5 kg and a velocity of $4 \mathrm{~m} / \mathrm{s}$, the string has a length of 1.5 m .
- What is the tension in the string at the top and bottom of the circle?

