What is Gravity?

- What is gravity?

What is Gravity?

- What are the reaches of the force of gravity?
- Why do astronauts on the ISS float?

From Gravity Simulation Lab

- What's the equation for Fg ? $5^{67 \times 10^{-1}} \frac{\mathrm{~m}^{2}}{\mathrm{cg}^{2}}$

$$
F_{\uparrow} \propto \frac{m_{1} m_{2}}{r^{2}} \quad F_{r_{e}}=\frac{G m_{1} m_{2}}{r^{2} r}
$$

- How do we end up with $\mathrm{Fg}=\mathrm{mg}$)
$g=\frac{G \mu_{\text {mars }}}{r_{\text {mars }}^{2}}$

$$
\begin{aligned}
& \text { objon earth } \\
& F \quad \downarrow \\
& G_{\text {Earth }}^{2}=m g \\
& M_{E}=5.98 \times 10^{24} \mathrm{~kg} \\
& R_{E}=6.38 \times 10^{6} \mathrm{~m} \text { (Average) } \\
& G=6.67259 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& g=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

How to Calculate "g"

- $F_{g}=m g$ is a simplified formula for gravity
- This equation is only good for estimations close to the earth's surface.
- $F_{g}=G m_{1} m_{2} / r^{2}$ is the full equation and is dependent on the distance from the earth's core.
$-G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}, \mathrm{~m}_{1}=$ mass of object $1, \mathrm{~m}_{2}$
$=$ mass of object 2 , and $r=$ distance between objects' centers.

Centripetal Force

- For an object to move in a circular pattern, an inward-pointing force must be applied.
- We call this centripetal force.
- Centripetal acceleration:

$$
a_{c}=v^{2} / r
$$

- Centripetal Force:

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{mv} v^{2} / \mathrm{r}
$$

Centripetal Force

Centripetal Acceleration:

$$
a_{c}=v^{2} / r
$$

Centripetal Force:
$F_{c}=m v^{2} / r$

Gravity as Centripetal Force

Practice Problem

- The space station travels with a tangential velocity of approximately $7,700 \mathrm{~m} / \mathrm{s}$. How far from the earth's surface does the satellite orbit? $R_{E}=6.38 \times 10^{6} \mathrm{~m}, \mathrm{M}_{\mathrm{E}}=6 \times 10^{24} \mathrm{~kg}$
$d=$ dist. from

$$
\begin{aligned}
& F_{C}=F g \\
& \frac{m v^{2}}{D}=\frac{G m M_{e}}{r^{2}}
\end{aligned}
$$

Carthis surface to satellite

$$
r=R_{E}+\frac{d}{z}
$$

$$
\frac{7,700^{2}=\left(6 \times 10^{24}\right) 6.7 \times 10^{-11}}{\left(6.38 \times 10^{6}+d\right)^{7}}
$$

$$
\begin{aligned}
& \left(6.38 \times 10^{6}+1\right) \times\left(970^{3}\right)=\left(\times 10^{14} .6 .7 .10^{-11}\right. \\
& \text { Practice Problems }
\end{aligned}
$$

- Our moon has a mass of $7 \times 10^{22} \mathrm{~kg}$ and is $3.9 \times 10^{8} \mathrm{~m}$ from earth's core. What is the tangential velocity of our moon as it orbits the earth?

