What is Gravity?

• What is gravity?

What is Gravity?

- What are the reaches of the force of gravity?
 - Why do astronauts on the ISS float?

From Gravity Simulation Lab

- What's the equation for Fg? $67 \times 10^{-11} N \frac{m^2}{k_3^2}$ $F_g \propto \frac{m_1 m_2}{r^2}$ $F_g = \frac{m_1 m_2}{r_2}$ $F_g = \frac{m_1 m_2}{r_2}$
- How do we end up with Fg = mg?

How to Calculate "g"

- F_g = mg is a simplified formula for gravity
 - This equation is only good for estimations close to the earth's surface.
- $F_g = Gm_1m_2/r^2$ is the full equation and is dependent on the distance from the earth's core.
 - G = 6.67x10⁻¹¹Nm²/kg², m₁ = mass of object 1, m₂
 = mass of object 2, and r = distance between objects' centers.

Centripetal Force

- For an object to move in a circular pattern, an inward-pointing force must be applied.
- We call this centripetal force.
- Centripetal acceleration:
 - $a_c = v^2/r$

 $F_c = mv^2/r$

• Centripetal Force:

Centripetal Force

Centripetal Acceleration: $a_c = v^2/r$ Centripetal Force: $F_c = mv^2/r$

Gravity as Centripetal Force

Practice Problem

• The space station travels with a tangential velocity of approximately 7,700 m/s. How far from the earth's surface does the satellite orbit? $R_F = 6.38 \times 10^6$ m, $M_F = 6 \times 10^{24}$ kg

(C38×10⁶+d)(1,703)=(×10³⁴.C7×10⁻¹¹ Practice Problems

 Our moon has a mass of 7x10²² kg and is 3.9x10⁸ m from earth's core. What is the tangential velocity of our moon as it orbits the earth?