Vectors Vs. Scalars

- Scalars have only a MAGNITUDE (number)
- Vectors have a MAGNITUDE and DIRECTION (+ or -)

<u>Scalar</u> Speed Distance Weight Height Mass Age <u>Vector</u> Velocity Displacement Acceleration Force Momentum

1D Motion

- Movement in a straight line
- **Position**-the point where an object is located
- **Displacement**-the change in an objects position in a specific direction defined as:

 $\Delta \mathbf{x} = \mathbf{x}_{f} - \mathbf{x}_{i}$

- **Distance** the quantity which describes the total length traveled or how much ground was covered.
- Time of travel-the time required to go from x_i to x_f.

Which line represents the greatest distance traveled?

Which line represents the greatest displacement?

1D Motion

- Speed vs. Velocity
 - Both measure the rate of travel
 - Velocity has a directional component (+ = rightward and - =leftward)
 - Speed does not have a directional component
 - Velocity can be defined as:
 - v = (total displacement)/(total time)

 $v = (\Delta x)/(\Delta t)$ (for movement in the x-direction)

- Speed can be defined as: $s = (distance traveled)/(\Delta t)$
- EX:
 - Car speed: 20 m/s
 - Car Velocity: 20 m/s NW

Track Diagrams

Where is the object at 3 seconds?

What is the object's displacement between 3 and 6 seconds?

- How long did it take the object to get to a position of 17 m?
- What is the object's average velocity?

Is the object's average velocity constant?

What is the object's displacement at 2 seconds? What is the object's velocity between 1 and 2 seconds? What is the object's displacement at 4 seconds? Is the objects average velocity constant?