Vectors Vs. Scalars

- Scalars have only a MAGNITUDE (number)
- Vectors have a MAGNITUDE and DIRECTION (+ or -)

Scalar
Speed
Distance
Weight
Height
Mass

Vector
Velocity
Displacement
Acceleration
Force
Momentum

1D Motion

- Movement in a straight line
- Position-the point where an object is located
- Displacement-the change in an objects position in a specific direction defined as:

$$
\Delta x=x_{f}-x_{i}
$$

- Distance- the quantity which describes the total length traveled or how much ground was covered.
- Time of travel-the time required to go from x_{i} to X_{f}.

Which line represents the greatest distance traveled?

Which line represents the greatest displacement?

1D Motion

- Speed vs. Velocity
- Both measure the rate of travel
- Velocity has a directional component (+ = rightward and - =leftward)
- Speed does not have a directional component
- Velocity can be defined as:
$v=$ (total displacement)/(total time)
$v=(\Delta x) /(\Delta t)$ (for movement in the x-direction)
- Speed can be defined as: $s=$ (distance traveled)/($\Delta \mathrm{t}$)
- EX:
- Car speed: $20 \mathrm{~m} / \mathrm{s}$
- Car Velocity: $20 \mathrm{~m} / \mathrm{s}$ NW

Track Diagrams

Where is the object at 3 seconds?
What is the object's displacement between 3 and 6 seconds? How long did it take the object to get to a position of 17 m ? What is the object's average velocity? Is the object's average velocity constant?

What is the object's displacement at 2 seconds?
What is the object's velocity between 1 and 2 seconds?
What is the object's displacement at 4 seconds?
Is the objects average velocity constant?

