Kinematic Equations: x-Direction

Equations

- $v=\Delta x / \Delta t \rightarrow$ for CONSTANT velocity only
- $\mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t}$
- $\mathrm{v}(\mathrm{t})=\mathrm{at}+\mathrm{v}_{\mathrm{i}}$
- $x(t)=1 / 2 a t^{2}+v_{i} t+x_{i}$
- $\mathrm{v}(\mathrm{t})^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2(\mathrm{a} \Delta \mathrm{x})$
- $\Delta x=\frac{t}{2}\left(v_{f}+v_{i}\right)$

Let's Practice

- A field hockey player strikes the ball at their end of the field and the ball travels toward the center of the field. The ball has an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. The friction between the field and the ball creates an acceleration of -1 $\mathrm{m} / \mathrm{s}^{2}$.
- What is the final position of the ball?
- How long does it take to stop?
- Where is the ball at $\mathrm{t}=1 \mathrm{~s}$?
- What's a motion diagram look like?
- How about x vs. t, v vs. t, a vs. t ?

Practice

A car traveling at $35 \mathrm{~m} / \mathrm{s}$ decelerates uniformly at a rate of $10 \mathrm{~m} / \mathrm{s}^{2}$ to a velocity of $25 \mathrm{~m} / \mathrm{s}$ in the same direction. How long does it take for the car to reach the new speed?

Practice

On a newly discovered planet, the acceleration due to gravity is $6.0 \mathrm{~m} / \mathrm{s}^{2}$ an astronaut steps off the top of a spaceship on the planet and lands on the surface in 3.8 seconds. How tall is the spaceship?

Practice

Katniss drops her backpack from a tree, 20 meters above the ground. Her friend, Peeta, is 10 meters away from the drop point, and is running at constant speed of $3.0 \mathrm{~m} / \mathrm{s}$ to catch the backpack. Will Peeta get there in time? Explain your answer.

