Motion Graphs and PhET Simulation

- 1. Go to: <u>http://phet.colorado.edu/en/simulation/moving-man</u> and click the "Run Now" button.
- 2. In the window that opens, click the tab that allows the man and the motion charts to be seen.
- 3. In the boxes on the right hand side of the screen, enter in the data for each scenario. For each set of initial values, draw the graphs for x vs. t, v vs. t, and a vs. t. Be clear in your graphs if a line is straight or curved (this will be very important).
- 4. If your man runs into a wall, do not include the portion of the graphs that correspond to impact (they will look like abrupt changes).

Initial Position	Initial Velocity (m/s)	Acceleration (m/s ²)	x vs t	v vs. t	a vs. t
2	0	0			
2	0				
-10	1	0			
10	-1	0			
-10	1	2			

10	-7	2		
10	-1	-2		
10	-7	2		

Questions:

1. What are some consistent features of each type of graph (x, v, and a)?

2. What does it mean for a velocity graph to have a line that passes from a negative value to a positive value or vice versa?

3. Why is it important to keep track of negative and positive signs on the velocity and acceleration?